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W illingness To Pay (WTP) of customers plays an anchoring role in pricing. This study proposes a new choice model
based on WTP, incorporating sequential decision making, where the products with positive utility of purchase are

considered in the order of customer preference. We compare WTP-choice model with the commonly used (multinomial)
Logit model with respect to the underlying choice process, information requirement, and independence of irrelevant alter-
natives. Using WTP-choice model, we find and compare equilibrium and centrally optimal prices and profits without con-
sidering inventory availability. In addition, we compare equilibrium prices and profits in two contexts: without
considering inventory availability and under lost sales. One of the interesting results with WTP-choice model is the “loose
coupling” of retailers in competition; prices are not coupled but profits are. That is, each retailer should charge the mono-
poly price as the collection of these prices constitute an equilibrium but each retailer’s profit depends on other retailers’
prices. Loose coupling fails with dependence of WTPs or dependence of preference on prices. Also, we show that compe-
tition among retailers facing dependent WTPs can cause price cycles under some conditions. We consider real-life data on
sales of yogurt, ketchup, candy melt, and tuna, and check if a version of WTP-choice model (with uniform, triangle, or
shifted exponential WTP distribution), standard or mixed Logit model fits better and predicts the sales better. These
empirical tests establish that WTP-choice model compares well and should be considered as a legitimate alternative to
Logit models for studying pricing for products with low price and high frequency of purchase.
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1. Introduction

Willingness To Pay (WTP) is the maximum amount a
customer would be willing to pay in order to receive a
product and it plays a central role in the selection of a
product from several choices. The primary aim of this
study is to propose a discrete choice model based on
WTPs and to apply the model to competitive and cen-
tralized pricing. In competitive pricing, each retailer
sells a product and determines its price to compete
with the other retailers selling similar products. In
centralized pricing, a retailer sells several products
and determines their prices to maximize the profit.
The proposed WTP-based choice model is used to
study competitive pricing, first by focusing on depen-
dencies among WTPs and customer preferences and
by ignoring inventory consideration, and then under
lost sales that alter customer choices. The same model
is also used in centralized pricing, and centrally opti-
mal prices are compared with the equilibrium in com-
petitive pricing. Another aim is to check the efficacy
of the WTP-choice model by comparing it with the
commonly used (multinomial) Logit model and

mixed Logit model in terms of the log-likelihood val-
ues as well as the accuracy of choice estimates. Com-
parisons involve real-life data on candy melts, yogurt,
ketchup, and tuna sold by different retailers (firms) in
different markets.
The classical approach to customer choices is

through Logit models (e.g., McFadden 1980). Logit
model and its extensions have so far been the pre-
ferred model (Chandukala et al. 2008, Schroeder
2010, pp.78–85). The customer choice literature is
growing with the exploration of the process of form-
ing perceptions and beliefs in different practical con-
texts. Figure 1 shows the choice process for a
customer given his experiences and information. The
perceptions and preferences of a customer shaped
from his memories and knowledge of products as
well as the prices lead to the product choice. As
opposed to Figure 1, McFadden (2001) connects a cus-
tomer’s memory/knowledge to the decision process
with a single path by combining his perception/belief
and preferences. In this study, we separate a cus-
tomer’s perception/belief and preferences using the
lower path in Figure 1. Through this separation, we
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explicitly represent customer preferences. Therefore,
in line with the direct utility approach (Chintagunta
and Nair 2011) to customer choice modelling, WTP-
choice model directly incorporates WTPs and cus-
tomer preferences, and provides direct insights into
customer behavior.
Willingness To Pay-choice model is motivated by

our interaction with retail executives, who suspect
that sales for their products are driven not only by the
prices but also by the customer preferences (e.g.,
habits and brand recognition of the products) based
on customers’ past experiences. They typically run
customer surveys to find out the customer prefer-
ences. The premise behind modelling preferences
includes capturing a customer’s established habits,
routine, convenience of shopping in certain patterns
or sequences, and relative magnitude of search/
transportation costs for retailers/products. Dillon
et al. (2013) studied two Chicago-based grocery
stores: Jewel and Dominick’s. They found out that
respectively 53% and 41% of shoppers are likely to
first visit Jewel and Dominick’s, which shows that
shoppers exhibit habits. These habits are collectively
called preferences and can be independent of product
prices. Preferences can also be deployed as measures
of customer loyalty (Bijmolt et al. 2010). One can
argue that the parameters of Logit model capture
choice probabilities, which may indirectly be inter-
preted as (revealed) preferences. Without resorting to
such an interpretation, we start with (stated) prefer-
ences directly incorporated into WTP-choice model.
Product prices and utility (quality) vary across

retail stores and over time. Most choice models such
as Logit model assume that the customers are aware
of the prices and utilities for all products. In reality,
customers are unlikely to maintain such extensive
information especially for high-purchase frequency
items, even if they are willing to spend the cognitive
effort for objectively processing this information,
which may lead to a state of paralysis-by-analysis.
Instead, each customer gathers knowledge about
some, but perhaps not all, products to make a choice,
e.g., Seiler (2010) maintains that customers infre-
quently check product prices and quality at a few
retail stores. Preferences help a customer make a
choice before checking all products (Carlson et al.

2009). Hauser and Wernerfelt (1990) showed that cus-
tomers have consideration sets whose size can be as
low as 2 depending on product categories. Hauser
(2014) reviewed heuristic rules for first forming a con-
sideration set and then choosing a product from this
set. WTP-choice model explicitly models customers’
consideration set, as well as the consideration set
heterogeneity among the customers. It uses prefer-
ences to explicitly rank the products within a particu-
lar consideration set. It hence captures the sequential
search for a product, which usually ends before con-
sidering all products.
As decision rules, customers use two-stage decision

process and threshold screening to simplify compli-
cated decisions (Gilbride and Allenby 2004). A cus-
tomer may be satisfied with a reasonable product and
stop searching for better products (St€uttgen et al.
2012) when prices are unavailable or costly to find
out. Such a customer does not necessarily maximize
his surplus—difference between the utility obtained
from a product and its price. Bounded rationality
(Gigerenzer and Selten 2002) of customers can be
used to explain why customers do not always maxi-
mize their surplus and instead are satisfied with just
non-negative (feasible) surplus. Even extremely
rational customers may not care about tedious sur-
plus maximization when buying low-value items,
whereas they can be quite meticulous when buying
high-value items. It is better to assess the appropriate-
ness of a customer’s search for maximum vs. feasible
surplus after specifying the product and its value.
Hence, the domain of choice models is very broad
and can accommodate new models, especially those
that are simple, based on customer preferences and a
feasible surplus criterion.
In Logit model, customer n chooses the product i

fromM products at a price pi with the probability

�i
n ¼ expðai þ bpinÞ

�XM
j¼0

expðaj þ bpjnÞ
��1

: ð1Þ

The choice of i = 0 indicates no-purchase with
p0n ¼ 0. The term expðai þ bpinÞ is the attractiveness
of option i and its increase/decrease in price pin is
governed by parameters a0; a1; . . .; aM and b
(Cameron and Trivedi 2005, pp. 491–495). Each cus-
tomer maximizes the surplus and each utility has a
double-exponential distribution (Talluri and Van
Ryzin 2004, p. 306). Recently, Farias et al. (2013) and
Jagabathula and Rusmevichientong (2013) propose
non-parametric choice models consistent with Logit
model and then predict revenues respectively for an
automaker and a television retailer.
To better appreciate the differences between WTP-

choice model and Logit model, we provide an
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Figure 1 A Choice Process with Its Inputs and Output
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example of a customer who considers buying organic
yogurt or regular yogurt, and prefers organic yogurt.
In real-life, the choice of this organic yogurt preferring
customer may not be affected by the price of regular
yogurt. This is because such a customer buys the
organic yogurt if it is affordable. Basing the choice
only on the affordability of the preferred product cor-
responds to the satisficing criterion of WTP-choice
model. On the contrary, this choice, if captured by
Logit model, is affected by the price of regular yogurt
due to surplus maximization over organic and regular
yogurts.
Many items at retailers experience stockouts

(DeHoratius et al. 2008), so the impact of a stockout
on the choice process is important to investigate.
Choice models such as Logit model or location choice
model cannot explicitly capture the effects of a stock-
out on the customer behavior (Gaur and Honhon
2006). To capture these, Musalem et al. (2010) used a
modified Logit model. Mahajan and van Ryzin (2001)
took stockout events into account by dynamically
removing the stocked-out items from the customer’s
consideration set. K€ok and Fisher (2007) highlighted
the inability of the standard Logit model to capture
the impact of stockouts on customer behavior, devel-
oped a demand rate function to capture this behavior
and used it for demand estimation and assortment
optimization. However, these works did not study
pricing decisions.
Choice models are the building blocks of price opti-

mization (€Ozer and Phillips 2012). Alptekino�glu and
Semple (2016) propose an exponomial choice model
and compare price optimization results obtained
using exponomial choice model with those obtained
by using Logit model. Both exponomial and Logit
frameworks lead to non-trivial price optimization (Li
and Huh 2011). When customers do not maximize
their utility as in the case of low-price items (St€uttgen
et al. 2012) or when the utility distribution does not
follow the double-exponential distribution as in Logit
model (or the normal distribution as in Probit model),
one needs a new choice model, possibly based on
WTPs.
Willingness To Pay estimation has received signifi-

cant attention and uses scanner or survey data
(Wertenbroch and Skiera 2002). In the scanner data
methods, there are buyers and non-buyers. WTP of a
buyer is at least the price being offered and that of a
non-buyer is less than the price being offered. Earlier
studies assumed WTP to be a single price point in
customer’s propensity to buy, however, later studies
consider it to be a range (Wang et al. 2007). WTP can
be indirectly constructed by starting with a utility
framework, however, estimating it directly fits the
data better in general, decreasing the chances of
exceedingly large estimated WTP variances (Scarpa

et al. 2008). Our paper parametrically estimates WTP
distributions using a likelihood criterion. It should be
noted that WTP does not have to be parameterized
for WTP-choice model; only in estimation and sharp-
ening some results, we resort to parameterization.
We compare Logit model and WTP-choice model

and show that competitive pricing with WTP-choice
model is relatively easy to analyze and implement. In
particular with WTP-choice model, the prices are
“loosely coupled”; each retailer should charge mono-
poly prices in competition as these constitute the equi-
librium, but that retailer’s profit depends on prices of
all the retailers. At the onset, loose coupling seems to
be surprising, this however relates to monopolistic com-
petition, where “each firm . . . can ignore its impact on,
and hence reactions from, other firms” (Hart 1985, p.
529). Monopolistic competition in a market is due to
the presence of customers who differentiate between
the brands in the market but do not easily switch to
another brand due to slight changes in the price of a
brand. This description of customers who exhibit a
friction to brand switching hints at price-independent
customer preferences. However, we note that these
preferences are not sufficient for loose coupling,
which vanishes with dependent WTPs. Independence
of WTPs and the independence of preferences from
prices together drive loose coupling and can yield
closed-form expressions for equilibrium prices.
We illustrate with an example that dependence of

WTPs can cause price cycles, where prices charged by
the retailers alternate within a set of prices. We pro-
vide conditions to rule out price cycles and to con-
clude the presence of an equilibrium with a single
price for each retailer. Although price cycles are not
usually considered as a solution to a pricing game in
Operations Management, they are empirically
observed (Noel 2008) and theoretically explained
(Maskin and Tirole 1988). Dependence of WTPs in
our model can provide another explanation for these
cycles.
In the centralized pricing context, the optimal price

of a product depends on the price of another product,
which rules out separation (counterpart of loose cou-
pling) of the pricing problem over prices. First, this
implies that competitive prices are easier to solve for
than centralized prices, which is an interesting obser-
vation on its own right as decentralized problems
(involving competitive games) are generally more
challenging. Second, the profit objective is not neces-
sarily concave so finding centrally optimal prices
require some development. Along these lines, an iter-
ative algorithm is provided and is shown to yield the
globally optimal prices for uniform and shifted expo-
nential WTP distributions.
We extend WTP-choice model to study competi-

tive pricing under substitutions driven by lost

Gupta and C�akanyildirim: WTP Choice Model: Validation & Pricing
1868 Production and Operations Management 25(11), pp. 1866–1884, © 2016 Production and Operations Management Society



sales. Substitutions in our model are based on lost
sales probabilities rather than lost sales events.
Compared to lost sales events, lost sales probabili-
ties are more stable in the sense that a probability
is the average frequency of many events. This sta-
bility makes lost sales probabilities for customers
easier to obtain and use in a choice model (Hopp
and Xu 2008). By modeling lost sales, we illustrate
the versatility of WTP-choice model and test the
robustness of loose coupling property. Provided
that WTPs are independent of each other and
preferences are independent of prices, this prop-
erty continues to hold.
Choice models map prices to choices through

parameters that need to be estimated (Olivares
et al. 2008, Aks�in et al. 2013). Although the pro-
posed WTP-choice model is non-parametric, we
parameterize the WTP distribution to simplify the
estimation scheme, which uses likelihood maxi-
mization. We assess the estimation and prediction
efficacy of WTP-choice models in comparison with
Logit models using real-life data on yogurt,
ketchup, candy-melt, and tuna. The estimation and
prediction results show that WTP-choice models
compare well with Logit models.
This paper’s contributions include introducing

WTP-choice model in section 2, establishing a loose
coupling property for competing retailers under inde-
pendent WTPs and studying equilibrium prices and
price cycles under dependent WTPs in section 3, find-
ing centralized prices and comparing them to equilib-
rium prices in section 4, extending the loose coupling
property to inventory models with lost sales in section
5 and empirically validating WTP-choice model in
section 6.

2. WTP-Choice Model

Willingness To Pay-choice model is designed to incor-
porate WTPs and customer preferences into the
choice process and it applies to a context of M prod-
ucts in a market. Customer n is offered product
m ≤ M at the price pmn . Subsequently, customer n deci-
des to buy (ymn ¼ 1) product m or not (ymn ¼ 0). In
WTP-choice model, customer n has the preferences
that are part of the lower path in Figure 1. The param-
eter dn captures the preference of customer n to buy a
product or nothing. For example, customer n with
dn ¼ 0 is interested in none of the products.
To explain product preferences and WTP-choice

model, we first consider two products, so M = 2. The
parameter /n denotes the preference of customer n: if
the customer prefers product 1, he has /n ¼ 1; other-
wise, /n ¼ 0. When dn ¼ 0, customer n is not in the
market to buy product 1 or 2. For example, such a cus-
tomer may enter a store to buy other products but
does not pay attention to products 1 or 2. When
dn ¼ 1, customer n walks in the store and checks out
the prices of products 1 and 2 to decide to buy or not.
This customer does not buy a product if he gets a neg-
ative surplus from each product, i.e., the price of each
product is higher than his WTP for that product.
Hence, customer n buys nothing, i.e., ðy1n; y2nÞ ¼
ð0; 0Þ, when he is uninterested or prices are high rela-
tive to WTPs. These respectively correspond to the
two (0, 0) choices in Figure 2a.
When ðdn; /nÞ ¼ ð1; 1Þ, customer n is in the market

to buy a product and prefers product 1 over product
2. If this customer’s surplus from product 1 is non-
negative, he buys product 1. The customer arrives at
this decision without considering product 2. If the

(a) (b)

Figure 2 Customer Decision Tree in WTP-Choice Model
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surplus from product 1 is negative, then the customer
considers product 2. If the surplus from product 2 is
non-negative, he buys it. Otherwise, he buys nothing.
The choice process for a customer with ðdn; /nÞ ¼
ð1; 0Þ is symmetric to the process described above
and is shown in Figure 2a.
Given prices ðp1n; p2nÞ, preferences ðdn; /nÞ, and cus-

tomer WTPs ðw1
n; w

2
nÞ, choices of customer n are:

• ðy1n; y2nÞ ¼ ð1; 0Þ: Product 1 if ½dn ¼ 1, /n ¼ 1,
p1n � w1

n� or ½dn ¼ 1, /n ¼ 0, p2n [ w2
n,

p1n � w1
n�.

• ðy1n; y2nÞ ¼ ð0; 1Þ: Product 2 if ½dn ¼ 1, /n ¼ 0,
p2n � w2

n� or ½dn ¼ 1, /n ¼ 1, p1n [ w1
n,

p2n � w2
n�.

• ðy1n; y2nÞ ¼ ð0; 0Þ: None if ½dn ¼ 1, p1n [ w1
n,

p2n [ w2
n� or ½dn ¼ 0�.

A firm often does not know the preferences or
WTPs of each customer as it faces a population of cus-
tomers. This population has preferences f/1; /2; . . .g
for /n 2 f0; 1g, and the firm can estimate the proba-
bility / that a random customer prefers product 1
over 2. Similar to /, we can use d for the probability
that a random customer is interested in a product.
Unlike (d, /), WTP random variables W1 and W2 are
not binary variables, so the probability associated
with them can be represented by a cumulative proba-
bility distribution PðW1 � p1; W2 � p2Þ for p1; p2 � 0.
We assume independence of WTPs in this study
except for section 3.2–3.3, so we obtain
PðW1 � p1; W2 � p2Þ ¼ PðW1 � p1ÞPðW2 � p2Þ. We
often use cumulative probability distribution Wi of
Wi, i.e., WiðpiÞ :¼ PðWi � piÞ. Figure 2b uses proba-
bilities ðd; /; W1; W2Þ to present a single random cus-
tomer’s choice from the firm’s perspective. In general,
these probabilities model two contexts: (i) all cus-
tomers have the same WTP but this WTP is unknown
to the firm, (ii) all customers have different WTPs that
come from the same distribution.
Given prices, preferences, and independent WTPs,

the choice probabilities for customer n are:

q1n :¼ Pðy1n ¼ 1; y2n ¼ 0Þ
¼ dð1�W1ðp1nÞÞfð1� /ÞW2ðp2nÞ þ /g; ð2Þ

q2n :¼ Pðy1n ¼ 0; y2n ¼ 1Þ
¼ dð1�W2ðp2nÞÞf/W1ðp1nÞ þ ð1� /Þg; ð3Þ

and q0n ¼ dW1ðp1nÞW2ðp2nÞ þ 1 � d ¼ 1 � q1n � q2n.
The first term on the right-hand side of Equation (2)
is the probability that the customer is interested in a
product. The second term in the parentheses is the
probability that the customer is willing to pay at
least the price of product 1. The third term in brack-
ets expresses the sum of the probabilities that the

customer prefers product 2 but finds it too expen-
sive and that the customer prefers product 1. A sim-
ilar interpretation can be given for the probability
q2n.
In the M-product version of WTP-choice model, we

assume that customers have a collection of ordered
consideration sets of Li for i = 1, . . ., S and each set
has size L ≤ M. Each product belongs to at least one
of the consideration sets. The probability that a cus-
tomer has the consideration set Li is /i andPS

i¼1 /i ¼ 1. We use L\m
i to denote the set of products

in Li that are preferred to product m. The choice prob-
ability qmn is given by

qmn :¼ dð1�Wmðpmn ÞÞ
XS
i¼1

/i1m2Li

Y
j2L\m

i

WjðpjnÞ ð4Þ

and q0n ¼ 1 � P
m qmn . Here, 1A represents the indi-

cator function which is 1 when A holds and 0 other-
wise. In WTP-choice model, each customer checks
the retailers in its consideration set Li one by one
without forming estimates about the prices at the
retailers to be checked. This is in line with bounded
rationality of customers, especially when buying
low-price items, motivated earlier. Although we
briefly use customer index as subscript of / above
to explain probability /, the subscript of / in the
remainder is always a consideration set index or a
product index when M = 2. Setting / ¼ /1 ¼
1 � /2 is also a convention adopted for M = 2 in
the remainder.
The choice probabilities in Equations (2–3) are

obtained with (M, L) = (2, 2) and L1 ¼ f1; 2g,
L2 ¼ f2; 1g. We also illustrate an example with
(M, L) = (3, 2), i.e., a population of customers choose
among three products and each customer’s considera-
tion set has size 2. All possible considerations sets are
L1 ¼ f1; 2g, L2 ¼ f1; 3g, L3 ¼ f2; 1g, L4 ¼ f3; 1g,
L5 ¼ f2; 3g, L6 ¼ f3; 2g. Therefore from Equation
(4), q1n ¼ dð1 � W1ðp1nÞÞf/1þ /2 þ /3W2ðp2nÞþ
/4W3ðp3nÞg.
When all customers are offered the same price

pM :¼ fp1; p2; . . .; pMg, the choice probabilities in
Equations (1), (2–3), or (4) do not depend on the cus-
tomer index n. Logit and WTP-choice models take the
same price and sales data and output choice probabil-
ities. Hence, they can be used in the same context and
their comparison in the following three aspects is
important.

2.1. Sequences
A natural question is whether the sequence of events
(learning prices and forming preferences) affect the
outcome of the choice process. WTP-choice process
above is conceived by assuming that customers learn
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prices in the last stage after they assess their prefer-
ences as in Figure 2a. Figure 3 on the contrary shows
customers that learn prices first as in an e-commerce
context. We can check that the same events lead to the
same choices in both Figures 2a and 3. Hence, WTP-
choice model is robust with respect to the sequence of
forming preferences and learning prices.
Logit model is not based on any explicit product

sequence, as it assumes that a customer decides after
collecting prices and assessing utilities for all prod-
ucts. Given choice probabilities, the probability for
each sequence of considering products can be
induced (Luce 1977). Although this gives a probabil-
ity for such a sequence, it always requires considera-
tion of all the products as the customers decide to
purchase at-once after reaching the end of the
sequence. In the nested Logit models (Danaher and
Dagger 2012), there is a natural product hierarchy:
product groups at the top level and products at the
bottom level. To illustrate, we can consider the choice
of a dessert (ice-cream, frozen yogurt, cakes) as the
product group and the choice of flavor (mint ice-
cream, strawberry yogurt, chocolate cake) as the
product. Nevertheless, the customer in a nested Logit
model also requires all of the attributes of products to
decide at-once. Therefore, regular and nested Logit
models assume at-once decision making. This is a
fundamental difference between Logit and WTP-
choice models.

2.2. Information Requirement
Logit model requires customers who are informed
with prices pM to decide at-once, whereas WTP-
choice model envisions customers who sequentially
acquire price information only for the product under
consideration. WTP-choice model on average requires
less price information than Logit model, so the former
model is more appropriate when the customers’

search cost is high relative to the price (Cachon et al.
2005). For example, customer n can traverse the top
path in Figure 2a to end up with the choice (1, 0)
without requiring p2n or w

2
n.

2.3. Independence of Irrelevant Alternatives (IIA)
Property
Logit model has the IIA property, i.e., the relative
odds of choice between two alternatives is not
affected by the addition of another alternative. IIA
property of Logit model has been criticized in the
literature (Luce 1977, Train 2009). Mixed or nested ver-
sion of Logit model or the exponomial choice model
(Alptekino�glu and Semple 2016) does not have the IIA
property, nor does WTP-choice model. First, we calcu-
late the relative odds in WTP-choice model with two
options: buy product 1 and not buy. This ratio
is q1ðp1Þ=q0ðp1Þ ¼ dð1 � W1ðp1ÞÞ=dW1ðp1Þ þ 1 � d.
Adding another alternative—product 2 sold at price p2

and its WTP distribution W2—we get another
ratio q1ðp1; p2Þ=q0ðp1; p2Þ ¼ dð1 � W1ðp1ÞÞ fð1 � /Þ
�W2ðp2Þ þ /g=fdW1ðp1ÞW2ðp2Þ þ 1 � dg. These ratios
are not always identical, so addition of an alternative
changes the relative odds.

3. WTP-Choice Model in Competitive
Pricing

Retailers often require a choice model that acts as an
input for maximizing their profit. We consider a com-
petitive pricing context, where each retailer owns a
product and determines its price. In particular, a retai-
ler decides the price pi of product i in expectation of
the prices pMni :¼ pM n pi of the competing products.
Equilibrium prices are studied under the following
four settings: independent WTPs, dependent and con-
tinuous-valued WTPs, dependent and discrete-valued
WTPs, and price-dependent preference. The last three
settings yield interesting insights, but the first setting
of independent WTPs goes a long way to predict the
sales in section 6.

3.1. Independent Willingness-to-Pays
Assuming that retailers do not collude among each
other, the objective for pricing product i to maximize
the profit of retailer i from a single customer is

PiðpMÞ¼ ðpi� ciÞqiðp1;p2; . . .;pMÞ

¼ ðpi� ciÞð1�WiðpiÞÞ
h
d
XS
j¼1

/j1i2Lj

Y
k2L\i

j

WkðpkÞ
i
;

ð5Þ
where ci is the cost per unit for retailer i. Since the
terms above in the square brackets are constant in
pi, the response price PiðpMniÞ, i.e., the optimal price

Figure 3 Alternative Decision Tree when Prices are Learnt First
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for given pMni, of retailer i is the maximizer of
ðpi � ciÞð1 � WiðpiÞÞ. In other words, the response
price PiðpMniÞ to competitor prices pMni is indepen-
dent of pMni when the WTPs are independent.
Hence, the price pi can be optimized without know-
ing competitor prices, the WTP distributions, or
preferences for the competitor products. The
response price pi satisfies

pi

pi � ci
¼ pi

wiðpiÞ
1�WiðpiÞ

� �
¼: KiðpiÞ; ð6Þ

where wiðpÞ ¼ dWiðpÞ=dp, the term inside square
brackets is the failure rate function of the WTP distri-
bution WiðpiÞ and KiðpiÞ is the generalized failure rate
function of the same distribution. From Equation (6),
a retailer’s response price does not depend on the
prices of other retailers, which is formally stated as
the loose coupling property in Theorem 1(a) below.
Failure rate functions are well studied for many dis-

tributions, e.g., uniform, gamma, Weibull (with shape
parameter >1), truncated normal and modified
extreme value distributions have increasing general-
ized failure rates, so the response price is unique.
Besides providing such a uniqueness property, the
optimality equation KiðpiÞ ¼ pi=ðpi � ciÞ is simple,
especially because KiðpiÞ can be looked up from litera-
ture (Birolini 2010, pp. 433–446). We assume that
WTPs have increasing failure rate unless otherwise is
said. This implies that KiðpiÞ is increasing. The
increasing failure rate assumption is used to obtain
unimodality of profit functions and uniqueness of
their maximizers as in Theorem 1(b) below. We sup-
pose that WTPs are distributed over intervals ½ai; bi�
for ai; bi � 0 and allow for ai ¼ 0 and bi !1. If
ai \ ci, we can ignore WTPs lower than ci and con-
sider the rest, whose distribution is Wið�Þ=
ð1 � WiðciÞÞ. Hence, we can assume ai � ci without
loss of generality. Then, WiðaiÞ ¼ 0 and WiðbiÞ ¼ 1,
so a customer buys when pi � ai and nobody buys
when pi � bi. The profit PiðpMÞ is strictly increasing
in pi as qiðpMÞ is constant for pi � ai and it is constant
at zero for pi [ bi, so it is not maximized by pi \ ai or
pi [ bi.

THEOREM 1 (LOOSE COUPLING).

(a) Unlike the profit function, the price response
function of a retailer is independent of costs,
prices, WTPs, and preferences of other retailers, so
equilibrium prices are monopolistic prices.

(b) The profit Pi is unimodal in pi. It is either maxi-
mized at the end points of ½ai; bi� or at the unique
root of KiðpiÞ ¼ pi=ðpi � ciÞ.

As examples for WTP distribution WiðpÞ, we con-
sider uniform (□) and shifted exponential (x). WiðpÞ,
KiðpÞ, and the equilibrium prices pie are given in
Table 1. Note that □ and x distributions have increas-
ing generalized failure rates, consequently we have a
unique best response price.
For Logit model, there is not a simple expression

for the response price. The objective ðpi � ciÞ�iðpMÞ
yields an implicit equation, where both sides
depend on pi and the right-hand side depends on
also pMni:

pi ¼ ci � ½bf1� �iðpi; pMniÞg��1: ð7Þ
Comparison of Equations (6) and (7) shows the sim-
plicity of pricing with WTP-choice model. Standard
logit model applies only to the case of independent
utilities without inventory consideration, so our next
comparison of Logit and WTP-choice model takes
place in section 6.
Loose coupling in Theorem 1 is an important prop-

erty for various reasons. First, it is a non-parametric
result that holds with any WTP distribution. Second,
a retailer in competition with others does not need to
know anything about the costs, prices, or WTPs for
the products sold by others. This tremendously
decreases the amount of information required by a
single retailer to decide on his price and greatly facili-
tates the implementation of WTP-choice model. In
practice, the highest hurdle to set up an equilibrium
formulation is the exact and timely information
required by a retailer; this hurdle is significantly low-
ered by loose coupling. Third, loose coupling simpli-
fies computations as it suffices for the equilibrium
price p to solve p/(p � c) = Λ(p), which is an equa-
tion of a single variable, or to plot p/(p � c) and Λ(p)
to find their intersection. Because of these reasons, it
is worthwhile to check if loose coupling remains valid
in various contexts.
Loose coupling is a striking result that relates to the

monopolistic competition. Monopolistic competition
occurs when prices change slightly and customers
resist to switching from one product to another. This
resistance is captured more by price-independent
preferences than their dependent counterparts. When
the preferences are dependent on prices, one may
expect loose coupling to fail, which we show in

Table 1 Prices with Different Willingness To Pay Distributions

Distribution Wi ðpÞ Ki ðpÞ pie

Uniform h ðai ; bi ) ðp � ai Þ=ðbi � ai Þ p=ðbi � pÞ maxfai ; ðbi þ ci Þ=2g
Shifted exponential x (ai ; 1; si ) 1 � expð�si ðp � ai ÞÞ psi maxfai ; 1=si þ cig
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section 3.4. However, it is not clear without a rigorous
analysis if the loose coupling property holds in the
cases of dependent WTPs. We analyze this in a duo-
poly—a market with two firms, each of which sells a
product. For example, Fedex with UPS and AutoZone
with O’Reilly Automotive constitute a duopoly,
respectively, in Air Freight and in Automotive Retail. A
firm in a market with multiple firms usually bench-
marks itself against another firm that often leads in
terms of revenue. For example, Target is a General
Merchandise Store, a category led by Wal-Mart in rev-
enue. So, Target can be paired with Wal-Mart to have
a duopoly, despite the presence of smaller competing
firms. Some other notable examples of duopolies are
Pepsi and Coca-Cola, and Kleenex and Puffs, so duo-
polies are not uncommon and imply M = L = 2 in our
notation. In case of oligopolies, a firm can view other
firms as a single fictional aggregate firm and decide
on its own price in a duopoly including itself and this
fictional firm. To the extent that WTPs can be aggre-
gated accurately, this approximation will work well.

3.2. Dependent and Continuous-Valued
Willingness-to-Pays
To extend WTP-choice model to dependent WTPs, we
start with the objective of pricing product i

Piðpi; p�iÞ ¼ ðpi � ciÞf/iPðWi� piÞ
þ /�iPðWi� pi;W�i� p�iÞg; ð8Þ

where Wi is the WTP random variable for product i.
Note that Wi is the distribution of Wi, so we use the
subscript i for the distribution and superscript i for
the random variable. In Equation (8), index �i
denotes the retailer other than retailer i when there
are two retailers. When i = 1 for example, /i and
/�i are the probabilities that a customer respectively
prefers product 1 and 2. In the remaining analytical
parts of the paper, we set d = 1, which, otherwise,
can only scale down the profit without affecting the
equilibrium or optimal prices.
We consider two examples: identical WTPs and

identically distributed WTPs. We determine the equi-
librium prices to identify if these prices inherit depen-
dence (coupling) fromWTPs.

3.2.1. Identical WTPs. Products which are ideal
substitutes or very similar can have identical WTPs.
For such WTPs, we assume uniform distribution, so
W1 ¼ W2 � W ¼ h½a; b�. Therefore, PðWi � pÞ ¼
ðp � aÞ=ðb � aÞ if a ≤ p ≤ b. PðW1 � p1; W2 � p2Þ
¼ Pðp1 � W � p2Þ ¼ ðp2 � p1Þ=ðb � aÞ if a � p1 \
p2 � b.
When retailers set identical prices, i.e., p1 ¼ p2,

PðW1 � p1; W2 � p2Þ ¼ 0, the equilibrium prices are

monopolistic prices, i.e., pi ¼ ðb þ ciÞ=2. This is a
symmetric equilibrium, with identical prices,
ðp1e; p2eÞ ¼ ððb þ cÞ=2; ðb þ cÞ=2Þ when retailers
have identical costs c1 ¼ c2 ¼ c.
When retailers charge different prices, say p1 \ p2,

we have structurally different profit maximization
problems for retailers 1 and 2.

Retailer 1: maxpðp� c1Þ /ðb� pÞ=ðb� aÞf if p\p2;

þð1� /Þðp2 � pÞ=�b� aÞg

Retailer 2: maxpðp� c2Þ ð1� /Þf if p\p1;

ðb� pÞ=ðb� aÞg

The best response price P for a retailer depends on
the price of the other retailer, so loose coupling does
not hold; P1ðp2Þ ¼ ð/b þ ð1 � /Þp2 þ c1Þ=2 and
P2ðp1Þ ¼ ðc2 þ bÞ=2. The equilibrium is ðp1e; p2eÞ ¼
ððð1 þ /Þb þ ð1 � /Þc2 þ 2c1Þ=4; ðc2 þ bÞ=2Þ if p1e

\ p2e. Similarly for p1e [ p2e, ðp1e; p2eÞ ¼ ððc1 þ bÞ=
2; ðð2 � /Þb þ /c1 þ 2c2Þ=4Þ. When 2c1 � ð1 � /Þ
b\ ð1 þ /Þc2 we have p1e \ p2e; when ð2 � /Þc1þ
/b [ 2c2 we have p1e [ p2e. As these conditions are
not mutually exclusive, it is possible to have both
equilibria. When retailers are identical, i.e.,
c1 ¼ c2 ¼ c, / = 1 � / = 0.5, both conditions are
satisfied on account of c < b. Then, we have two
non-symmetric equilibria. This is very interesting as
retailers charge different equilibrium prices
ðp1e; p2eÞ ¼ ðð3b þ 5cÞ=8; ðc þ bÞ=2Þ and ðp1e; p2eÞ ¼
ððc þ bÞ=2; ð3b þ 5cÞ=8Þ, even if they are identical.
The prices at these equilibria are mirror images of
each other with respect to the p1 ¼ p2 line.

3.2.2. Identically distributed WTPs. We consider
W � □[0, b], W1 � W þ h½0; �� and W2 � W þ
h½0; �� for 0 < e < b � c. The same W is a part of
both W1, and W2, while realizations of □[0, e] can be
different.

LEMMA 1 (EQUILIBRIUM WITH IDENTICALLY DISTRIBUTED

WTPS).

(a) For � � p1; p2 � b, we have PðWi � piÞ ¼
ð� þ 2ðb � piÞÞ=ð2bÞ and

PðW1� p1;W2� p2Þ ¼
0 if p2� p1 � �;

ðp2 � p1 þ �Þ3=ð6b�2Þ if p1 � �� p2� p1;

ððp1 � p2Þ3 þ 3ðp1 � p2Þ2�
�3ðp1 � p2Þ�2 þ �3Þ=ð6b�2Þ if p2 � �� p1� p2;

ðp2 � p1Þ=b if p1� p2 � �:

8>>>>>><
>>>>>>:
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(b) For identical retailers, the only symmetric equili-
brium has p1e ¼ p2e ¼ ð6b þ 9c þ 4�Þ=15. There
are also two non-symmetric equilibria as
ðp1e; p2eÞ ¼ ðð8b þ 8c þ 4�Þ=16; ð6b þ 10c þ 3�Þ=
16Þ satisfying p1e � p2e þ � and ðp1e; p2eÞ ¼
ðð6b þ 10c þ3�Þ=16; ð8b þ 8c þ 4�Þ=16Þ satisfy-
ing p1e � p2e � �.

The symmetric equilibrium points to an equal mar-
ket split. In non-symmetric equilibria, the retailer
charging more has a smaller market share. Although
both retailers are identical, the market can have a
retailer leading with a higher price and the other lead-
ing with a larger market share.
When the WTPs are dependent as opposed to inde-

pendent, we obtain lower equilibrium prices. Using
PðWi � piÞ ¼ ð� þ 2ðb � piÞÞ=ð2bÞ and loose cou-
pling, the equilibrium price is pie ¼ ð2b þ 2c þ �Þ=4
for uniformly distributed independent WTPs and
identical retailers. When the WTPs are dependent, the
symmetric equilibrium price p1e ¼ p2e ¼ ð6b þ 9cþ
4�Þ=15 is lower than (2b + 2c + e)/4. Similarly the
non-symmetric equilibria satisfy ðp1e þ p2eÞ=2\ ð2bþ
2c þ �Þ=4. Recognition of dependence in our example
reduces prices, which is a welcome news to customers
but not so to firms. Ideally, firms should reduce the
dependence of WTPs, possibly by employing product
differentiation strategies.

3.3. Dependent and Discrete-Valued Willingness-
to-Pays Lead to Price Cycles
A price cycle is a dynamic price equilibrium identi-
fied by a finite sequence of non-identical multiple
price-pairs, which satisfies three conditions: (i) any
consecutive pair must share a common price; (ii) the un-
common price in the succeeding pair is the best
response to the common price; (iii) when the last and
the first price pairs in the sequence are considered as
consecutive price pairs, their prices satisfy conditions
(i) and (ii). We consider discrete-valued finite WTPs
in this section because they can cause a price cycle.
Discrete WTPs imply discrete prices—often found in
practice as multiples of ¢1 or ¢5 (Phillips 2005).
In this study, we seek only pure strategy equilibria

and always refer to pure strategy equilibrium when say-
ing equilibrium. In the absence of a price-pair equilib-
rium, it is possible to seek a price cycle that consists of

multiple price-pairs. One may also seek a mixed strat-
egy equilibrium in the absence of a pure strategy
equilibrium, however, we choose to focus only on
pure strategies. When there is not a price-pair equilib-
rium, we can start at an arbitrary price-pair and gen-
erate a price sequence that satisfies (i) and (ii). Since
price-pairs are finite in our discrete case, such a
sequence must also satisfy (iii). Hence, absence of a
price-pair equilibrium implies the presence of at least
one price cycle. The contrapositive of this statement is
also true; absence of a price cycle implies the presence
of a price-pair equilibrium. Moreover, price cycles
and price-pair equilibria may coexist in a given
instance. Consequently, a price cycle can be the best
description of the equilibrium in a market that does
not have a price-pair equilibrium.
A price cycle can be represented by a sequence of

price-pairs: fp10; p20g ! fp10; p21g ! fp11; p21g ! fp11;
p22g ! � � � ! fp1j ; p20g ! fp10; p20g, where “?” indi-

cates the direction of a price cycle. For example,

fp11; p21g ! fp11; p22g implies that the cycle goes from

fp11; p21g to fp11; p22g, as p22 is the best response of the

retailer 2 to retailer 1’s price p11. The length of the price
cycle is the minimum number of price-pairs traversed
before returning to the same price-pair. Accordingly,
the shortest price cycle is of length 4.
An example of a price cycle with length 4 is

depicted by arrows in Table 2, which shows the joint
WTP probabilities for prices p1 2 f1; 2; 7g and
p2 2 f1; 2; 3g, respectively, charged by retailers 1 and
2. In the example, retailers incur zero cost and
/ = 0.4. The expected profits of the retailers are from
Equation (8), e.g., P1ð2; 2Þ ¼ 2ð/PðW1 � 2Þþ
ð1 � /ÞPðW1 � 2; W2\2ÞÞ ¼ 2ð0:4ð0:7Þ þ 0:6ð0:3ÞÞ ¼
0:92, other profits are in Table 2. They satisfy
P2ð2; 3Þ[ P2ð2; 1Þ; P2ð2; 2Þ; P1ð7; 3Þ[ P1ð1; 3Þ; P1

ð2; 3Þ; P2ð7; 2Þ[ P2ð7; 1Þ; P2ð7; 3Þ and P1ð2; 2Þ[
P1ð1; 2Þ; P1ð7; 2Þ, and these four inequalities respec-
tively justify the four arrows in the cycle {2, 2}
? {2, 3} ? {7, 3} ? {7, 2} ? {2, 2}. This is the
unique cycle and there does not exist a single price-
pair equilibrium.
The dependence of WTPs can eliminate a price-pair

equilibrium and leads to a price cycle as in the above
example. If they are independent, there is always a
price-pair equilibrium by Theorem 1. On the other

Table 2 Price Cycle Example. Willingness To Pay probabilities PðW1 ¼ p1; W2 ¼ p2Þ; Profits ðP1ðp1; p2Þ; P2ðp1; p2ÞÞ

ðp1; p2Þ

Retailer 2

1 2 3

Retailer 1 1 0.00; (0.40, 0.60) 0.05; (0.58, 0.84) 0.25; (0.73, 0.81)
2 0.25; (0.56, 0.72) 0.10; (0.92, 1.08) ? 0.10; (1.16, 1.11) ↓
7 0.05; (0.70, 0.90) 0.10; (0.91, 1.24) ↑ 0.10; (1.33, 1.23)  
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hand, even if there is a price-pair equilibrium, WTPs
can be dependent. This is because WTP dependence
can be induced by altering WTP probabilities that do
not show up in the equilibrium comparisons. So,
inferring independence is harder, but still possible as
in parts (a) and (b) of the next theorem. It is also
important to characterize the absence of a price cycle
toward concluding that a price-pair equilibrium exists
under dependent WTPs, this reasoning is adopted by
the theorem.

THEOREM 2 (EQUILIBRIUM WITH DEPENDENT WTPS).

(a) There is no price cycle of length 4 such as
fp1l ; p2l g ! fp1l ; p2hg ! fp1h; p2hg ! fp1h; p2l g !
fp1l ; p2l g, if the WTPs satisfy

PðWi� pil;W
�i\p�ih ÞPðWi� pih;W

�i\p�il Þ
¼ PðWi� pih;W

�i\p�ih ÞPðWi� pil;W
�i\p�il Þ:

(b) The WTPs are independent if the condition in (a)
is satisfied for all prices.

(c) No price cycle of length 4 can contain a price
pair with the lowest prices for both retailers.
Consequently, there is a price-pair equilibrium if
both retailers consider binary prices pi 2 fpil; pihg.

(d) There is no price cycle of length 4 if WTPs and
preferences satisfy

max
fpi

l
;pi

h
;p�i2fp�i

l
;p�i

h
gg

Pðpih�Wi;p�i[W�iÞ
þ/iPðpih�Wi;p�i�W�iÞ

Pðpil�Wi\pih;p
�i[W�iÞ

þ/iPðpil�Wi\pih;p
�i�W�iÞ

8>>><
>>>:

9>>>=
>>>;

� ai� ci
bi� ai

for either i = 1 or 2.
(e) There is a price-pair equilibrium if either one of the

retailers considers binary prices pi 2 fpil; pihg and
the condition in (d) is satisfied.

Theorem 2(a) gives a condition to eliminate a par-
ticular cycle. This condition boils down to indepen-
dence of WTPs when all cycles of length 4 are to be
ruled out. So, independence is sufficient to eliminate
these cycles. Theorem 2(a)–(b) eliminate the cycles
whereas Theorem 1 establishes the existence of a
price-pair equilibrium, which does not rule out cycles.
Theorem 2(c) shows that when retailers consider bin-
ary prices, there must be a price-pair equilibrium
despite the dependence of the WTPs. Theorem 2(d)
gives the condition under which there is no price
cycle of length 4 despite the dependence of WTPs.
From the WTP distribution in Table 2, we evaluate the
left-hand side of the condition in Theorem 2(d) for
i = 1 and i = 2. Correspondingly, if either 39

15 � a1
b1 � a1

or 37
17 � a2

b2 � a2
holds, there are no price cycles of length

4. These inequalities imply conditions on the support

parameters a1
b1
� 39

54 or a2
b2
� 37

54. So, if the support of

either W1 or W2 is tight, i.e., the uncertainty of W1 or

W2 is low, there are no price cycles of length 4. This
conclusion leads to price-pair equilibrium in Theo-
rem 2(e) when either retailer considers binary prices.
In these regards, Theorem 2 applies even when Theo-
rem 1 does not.

3.4. Price-Dependent Preference
Another extension of WTP-choice model involves
price-dependent preference /ðp1; p2Þ that can be used
to capture some of the real-life contexts, where not
only profits but also price responses are coupled. In a
duopoly profit maximization problem with continu-
ous WTPs, retailer 1’s objective is maxpðp � c1Þ
ð1 � W1ðpÞÞf/ðp; p2Þ þ ð1 � /ðp; p2ÞÞW2ðp2Þg. The
best response price p1 for retailer 1 satisfies:

1¼ c1
p1

þ K1ðp1Þ� p1ð1�W2ðp2ÞÞ½@/ðp1;p2Þ=@p1�
f/ðp1;p2Þþð1�/ðp1;p2ÞÞW2ðp2Þg

� ��1
:

ð9Þ
Table 3 Examples with Dependent Preferences

Preference Response price

Price-independent preference / p1 is given by 1 ¼ c1=p1 þ ½K1ðp1Þ��1
Increasing in p1

/ðp1; p2Þ ¼ p1

p1 þ p2

p1 is higher than the price under price-independent preference

1 ¼ c1
p1
þ K1ðp1Þ � p1p2ð1�W2ðp2ÞÞ

ðp1 þ p2Þfp1 þ p2W2ðp2Þg
� ��1

Decreasing in p1 with parameters
p1max, p

2
max

/ðp1; p2Þ ¼ p1max � p1

p1max þ p2max � p1 � p2

p1 is lower than the price under price-independent preference

1¼ c1
p1
þ K1ðp1Þþ p1p2ð1�W2ðp2ÞÞ

fp1maxp
2
maxW2ðp2Þ�p2ðp1max�p1Þð1�W2ðp2ÞÞg

� ��1
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It is easy to see from above that the best response p1

for retailer 1 depends on other retailer’s price p2,
unlike loose coupling in Theorem 1. This coupling
can lead to higher or lower price responses and is
shown with two examples in Table 3. In particular,
a retailer responds by charging a higher (lower)
price if the preference for that retailer is increasing
(decreasing) in its own price compared to the price
charged when the preference is independent of
prices.

THEOREM 3 (EQUILIBRIUM WITH PRICE-DEPENDENT

PREFERENCES). If the preferences for both retailers are
increasing (decreasing) in their prices and an equilibrium
exists, then the equilibrium prices will be higher (lower)
compared to the equilibrium prices when the preferences
are independent of prices.

4. Centralized Pricing with
WTP-Choice Model

In the centralized pricing context, a retailer sells both
products 1 and 2, and maximizes the profit

Pðp1; p2Þ ¼ �W1ðp1Þfðp1 � c1Þð1� /2
�W2ðp2ÞÞ

� /1ðp2 � c2Þ �W2ðp2Þg þ ðp2 � c2Þ �W2ðp2Þ
¼ �W2ðp2Þfðp2 � c2Þð1� /1

�W1ðp1ÞÞ
� /2ðp1 � c1Þ �W1ðp1Þg þ ðp1 � c1Þ �W1ðp1Þ;

where we assume the independence of WTPs and
use the tail probability �Wi for W

i of product i. In the
remainder of the paper, we consider independent
WTPs because the solution with independent WTPs
can approximate the solution with dependent
WTPs and the WTP-choice model with independent
WTPs represent real-life data sufficiently well as dis-
cussed in section 6.
Since Pðp1; p2Þ is continuous in both of its argu-

ments, it has one or possibly many global maximizers.
Interestingly, the centralized pricing problem turns
out to be more challenging than the (decentralized)
pricing game, whose analysis simplifies due to loose
coupling. Recall that the support of WTP for product i
is ½ai; bi�, so the profit Pðp1; p2Þ in general can be
defined inside as well as outside the WTP region
fðp1; p2Þ : p1 2 ½a1; b1� and p2 2 ½a2; b2�g. Similar to
previous sections, we let PiðpÞ ¼ argmaxpi P
ðpi; p�i ¼ pÞ for 0 ≤ p < ∞. This maximizer is unique,
in the interval ½ai; bi� and depends on preference /i as
shown in the next theorem, which is the counterpart
of Theorem 1. Therefore, the centralized pricing solu-
tion is obtained from the intersection of P1ðp2Þ and
P2ðp1Þ. Consequently, a unique intersection of P1ðp2Þ
and P2ðp1Þ leads to the unique optimal price pair.

THEOREM 4 (CENTRALIZED PROFIT AND PRICES).

(a) The profit Π is unimodal in pi when p�i is fixed.
Its maximizer Piðp�iÞ is unique and in the
interval ½ai; bi�. When ai \ p ¼ Piðp�iÞ\ bi, it
solves

wiðpÞ
�WiðpÞ

p� ci � ðp�i � c�iÞ /i

1= �W�iðp�iÞ � ð1� /iÞ
� �

¼ 1:

ð10Þ
P1ðp2Þ and P2ðp1Þ must intersect at least once inside the
WTP region.

(b) Centralized prices are higher than their decen-
tralized (equilibrium) counterparts. A pre-
ferred product is priced higher: Piðp�iÞ increases
in /i.

We propose the Centralized Iterative Pricing Algo-
rithm (CIPA) in Table 4 to find the intersection of
P1ðp2Þ and P2ðp1Þ. Afterwards, we prove that CIPA
gives the global optimal for the centralized profit
under some assumptions that will be addressed later
on.

THEOREM 5 (GLOBAL OPTIMAL FROM CIPA). If P1ðp2Þ
and P2ðp1Þ intersect exactly once and the CIPA con-
verges, then CIPA yields the global optimal for the cen-
tralized profit.

Centralized Iterative Pricing Algorithm can
numerically be checked in each instance to see if it
delivers a converging sequence fðp1n; p2nÞg. Similarly,
it may be possible to draw P1 and P2 in an
instance to find intersection point(s). Rather than
resorting to numerical analysis, we push the argu-
ments analytically by considering two special cases
of the WTP distributions: uniform and shifted
exponential. The next theorem shows in these cases
that P1 and P2 intersect exactly once and satisfy
the hypothesis of Theorem 5.

THEOREM 6 (UNIQUE INTERSECTION OF P1 AND P2).

(a) If the WTP of product i has a uniform distribution
over ½ai; bi� for i 2 {1, 2}, then

Table 4 Centralized Iterative Pricing Algorithm

Inputs: Functions P1, P2 and accuracy parameter e > 0.

Initialize p11 ¼ a1, p
2
1 ¼ P2ðp11Þ, n = 1.

Repeat n = n + 1;
p1n ¼ P1ðp2n�1Þ and p2n ¼ P2ðp1nÞ

Until prices satisfy jp2n � p2n�1j � �.

Outputs: Sequence of fðp1n ; p2nÞg.

Gupta and C�akanyildirim: WTP Choice Model: Validation & Pricing
1876 Production and Operations Management 25(11), pp. 1866–1884, © 2016 Production and Operations Management Society



Piðp�iÞ ¼ ci
2
þ bi

2
þ /i

2
ðp�i � c�iÞ
1

ðb�i � a�iÞ=ðb�i � p�iÞ � /�i
;

ð11Þ

which decreases in p�i. In addition, if bi=ai �
ð1 � /ici=aiÞ=ð1 � /iÞ, then pi � PiðP�iðpiÞÞ is
increasing. It crosses zero exactly once at pi �
maxfai; ðbi þ ciÞ=2g, i.e., P1 and P2 intersect exactly
once.

b) If the WTP of product i has a shifted exponen-
tial distribution ðai; 1; siÞ for i 2 {1, 2}, then

Piðp�iÞ¼ ciþ 1

si
þ/iðp�i� c�iÞ 1

es�iðp�i�a�iÞ �/�i
;

ð12Þ

which decreases in p�i. In addition, if
ðai � ciÞsi þ sinh�1ð/iÞ � 1, then pi ¼ PiðP�iðpiÞÞ
has a unique fixed point pi � maxfai; 1=si þ cig, i.e.,
P1 and P2 intersect exactly once.
Theorem 6 has two technical conditions

bi=ai � ð1 � /ici=aiÞ=ð1 � /iÞ and ðai � ciÞsiþ
sinh�1ð/iÞ � 1. Both are satisfied when ai ¼ ci. For
example, ðai � ciÞsi þ sinh�1ð/iÞ � 1 holds for
ai ¼ ci as /i � 1\ 1:175 	 sinhð1Þ. The theorem
establishes the uniqueness of intersection of P1ðp2Þ
and P2ðp1Þ for two important WTP distributions by
using two related proof methodologies of monotonic-
ity for p � PiðP�iðpÞÞ and fixed point for p � Pi

ðP�iðpÞÞ ¼ 0. It also gives us the price Piðp�iÞ expres-
sions from which we can observe that this price

increases in /i, bi, 1=si, a�i, b�i, 1=s�i and decreases in
p�i, /�i. Most of these are intuitive as they imply that
the price of a product increases with its WTP and
preference when the price of the other product is con-
stant. When both prices are optimized, some interest-
ing results are illustrated below through numerical
examples.
Centrally optimal prices ðp1
; p2
Þ and equilibrium

prices ðp1e; p2eÞ can be computed and compared under
various market parameters: ðai; bi; /iÞ for uniform
distribution and ðai; si; /iÞ for the shifted exponential
distribution. In our base case, the parameter values
are ðai; bi; /iÞ ¼ ð5; 20; 0:5Þ and ðai; si; /iÞ ¼
ð5; 0:1; 0:5Þ and ci ¼ 1 for i = 1, 2 and these values
are altered one by one as indicated by the horizontal
axes of Figures 4a–6b. In these figures, as in Theorem 4
(b), competition among retailers drives the prices
down. The centrally optimal price p1
 increases and
p2
 decreases when the preference /1 increases (Fig-
ure 4a and b). The equilibrium prices of Table 1 are
illustrated in Figures 4a,b and 5a,b and do not depend
on parameters /1 or a1.
In Figure 5a and b, the optimal price p1
 decreases

with higher a1. This is counter to the intuition as
higher a1 implies a (stochastically) larger WTP for
product 1 and in turn should lead to a non-decreasing
price for product 1 in the single-product context. In
the two-product context, however, p2
 increases with
a1 and p1
 ¼ P1ðp2
Þ decreases with p2
. The cumula-
tive effect turns out to be that p1
 decreases with a1.
Hence, Figure 5a and b are important in illustrating
the interaction between two products that cannot be
inferred from the single-product context.
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Figure 4 Optimal Prices ðp1
; p2
Þ and Equilibrium Prices ðp1e ¼ p2e ¼ peÞ as Preference /1 Increases
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Similar to a1, an increase in b1 or in 1=s1
increases the WTP for product 1. In view of Equa-
tions (11–12), both b1 and 1=s1 have a direct effect
on P1ðp2Þ and increase it, unlike a1. Indirectly,
higher b1 pulls P2ðp1Þ up and in turn pushes
P1ðp2Þ down. In Figure 6a and b, the direct effect
dominates the indirect effect and the optimal
prices ðp1
; p2
Þ increase in b1 and 1=s1. The equi-
librium price p1e increase with b1 and 1=s1 in

accordance with Table 1 while the equilibrium
price p2e is constant in b1 and 1=s1 as implied by
the loose coupling property.
It is easy to check Pðp1; p2Þ ¼ P1ðp1; p2Þþ

P2ðp1; p2Þ for every p1; p2. Hence, P1ðp1
; p2
Þþ
P2ðp1
; p2
Þ �P1ðp1e; p2eÞ þP2ðp1e; p2eÞ ¼ Pðp1
; p2
Þ�
Pðp1e; p2eÞ � 0, i.e., the total profit is higher in the cen-
tralized pricing context than that in the competitive
context.
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5. Competitive Pricing under Stockouts

Consideration of stockouts (inventory unavailability)
can improve the applicability of a choice model. A
stockout at a retailer increases the demand at another
retailer as customers substitute their preferred but
stocked-out product with another. We can investigate
the versatility of WTP-choice model and test the
robustness of loose coupling under stockouts and
competition. We continue to consider independent
WTPs because the loose coupling property fails
already with dependent WTPs.
We use fill rates to study competitive pricing under

stockouts in a duopoly. If a customer arrives at a
stocked-out retailer, he naturally considers buying
from another retailer; this can be called inventory-
based substitution behavior. Otherwise, if stockout-
facing customers do not consider buying from
another retailer and simply buy nothing, the expected
demand faced by a retailer is simply his fill rate times
the demand without stockouts. Subsequently, com-
petitive pricing follows the same structure (including
loose coupling) as before and is not interesting to
analyze.
Under inventory-based substitution, customers pre-

ferring retailer 2 in particular, consider retailer 1
when retailer 2 is stocked-out. Previously, such cus-
tomers considered retailer 1 only when retailer 2
prices too high. Now both a stockout and a high price
at retailer 2 divert customers to retailer 1, hence the
choice probability of retailer 1 needs to have some
additional terms based on stockouts. These additional
terms are detailed below for a lost sales case. The
stockout probability or stockout rate at retailer i is
denoted by mi , i.e., 1 � mi is the fill rate of retailer i.
A customer sooner or later, depending on prefer-

ring retailer i or the other, shows up at retailer i with
the probability /i þ /�i½ð1 � m�iÞW�iðp�iÞ þ m�i�.
Note that these probabilities arise only under the lost
sales assumption, where a customer facing stockout
does not wait or backorder with the retailers. This
customer finds the product in stock with fill rate
1 � mi and buys with probability 1 � WiðpiÞ. Hence,
the sales probability is

qlsi ðp1; p2Þ :¼ ð1� miÞð1�WiðpiÞÞ
� ½/i þ /�iðð1� m�iÞW�iðp�iÞ þ m�iÞ�:

When stockouts are considered, we use the term
sales probability rather than choice probability. The
difference between a choice and a sale is the inven-
tory availability incorporated via mi. If both retailers
are stocked-out or price too high for a particular
customer, they lose the customer. This happens with
probability

½mi þ ð1 � miÞWiðpiÞ�½m�i þ ð1 � m�iÞW�iðp�iÞ�. Since
mi þ ð1� miÞWiðpiÞ � WiðpiÞ, the loss probability is at
least q0ðp1; p2Þ ¼ W1ðp1ÞW2ðp2Þ of section 2 for
d = 1. Eventually, the profit of retailer i under lost
sales is

Pls
i ðp1; p2Þ :¼ ðpi � ciÞqlsi ðp1; p2Þ:

Equipped with profit expressions, we can express
the response price for retailer i:

Pls
i ðp�iÞ ¼ argmax

pi

n
Pls

i ðp1; p2Þ ¼ ðpi � ciÞð1�WiðpiÞÞ

ð1� miÞ½/i þ /�iðð1� m�iÞW�iðp�iÞ þ m�iÞ�
o
:

The profit Pls
i has multiplication of three terms, the

first two are ðpi � ciÞ and 1 � WiðpiÞ, and they
depend on retailer i’s price pi while the last term in
brackets is not dependent on pi. So, this profit expres-
sion has the same structure as Equation (5). Hence,
the price solution pi;els is the same as that without
stockouts as in Equation (6): pi;els ¼ ci þ �Wiðpi;els Þ=
wiðpi;els Þ. The prices of Table 1 as well as loose coupling
still remain valid. More interestingly, the equilibrium
price charged by a retailer does not depend on the
stockout rates, as the price is relevant only when the
retailer can fulfill the demand. However, the profit
Pls

i depends heavily on both mi and m�i.
As shown above, consideration of inventory

unavailability under the lost sales assumption does
not harm the loose coupling property and Theorem 1
still applies. Emboldened by this observation, Gupta
(2014) presents two backorder models obtained by
considering whether a stock-out facing customer at
his preferred retailer gives priority to his preference
and backorders from the preferred retailer or to
immediate availability and attempts to buy a similar
product from another retailer. Interestingly, loose
coupling property continues to hold in both of the
backorder models. In sum, the loose coupling prop-
erty is robust with respect to the consideration of
inventory unavailability through various models.

6. Estimation with Scanner Data and
Numerical Comparisons

We use the maximum (log-) likelihood estimation
(MLE) scheme with real-life data pertaining to low-
price items, whose choices are likely to be based more
on preferences than on utility maximization. We
report the mean percentage errors (MPEs) in sales to
compare various parameterizations of WTP-choice
model with standard and mixed Logit models. Given
the scanner data of prices fpn ¼ ½p1n; . . .; pMn � :
n ¼ 1; . . .; Ng and of choices fyn ¼ ½y1n; . . .; yMn � :
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n ¼ 1; . . .; Ng along with preferences U ¼ ½/1; . . .;
/S� over consideration sets ½L1; . . .; LS�, WTPs

W ¼ ½W1; . . .; WM�, a ¼ ½a1; . . .; aM� and b, the log-
likelihood functions for WTP-choice, standard logit
and mixed logit models are

Lwtpðd;U;WÞ ¼
XN
n¼1

XM
m¼0

ymn log qmn ðd;U;W ; pn; ynÞ;

Lslða; bÞ ¼
XN
n¼1

XM
m¼0

ymn log �m
n ðb; a; pn; ynÞ;

Lmlða; FÞ ¼
XN
n¼1

XM
m¼0

ymn log
1

B

XB
b¼1

�m
n ðbb; a; pn; ynÞ;

where y0n ¼ 1 � P
m ymn , q

m
n is from Equations (2–3)

or (4) and �m
n is from (1), and a0 is set to zero in Logit

model without any loss of generality. For WTP-choice
model, the likelihood formulation above uses inde-
pendent WTPs. This formulation can be extended for
dependent WTPs and the resulting Lwtp can be maxi-
mized, but such a maximization would require more
computational effort and can be avoided unless nec-
essary. For mixed Logit model, we follow the simu-
lated log-likelihood function obtained numerically
through simulation (Revelt and Train 1998), where B
is the number of draws from the cumulative density
function F(b) giving b1; . . .; bB.
In Lemma 3 of Appendix S1, we establish the con-

cavity of Lwtpðd; U; WÞ for given W and concavity of
the Lwtp for x distribution in each of the WTP parame-
ters sm or am. Without a readily available package to
maximize Lwtp, we develop a simple search technique
for maximization by assuming that either parameters
are discrete or are approximated well by discrete val-
ues. We identify sets of values for parameters (e.g., d,
/, a1, a2, b1, b2 for □ WTP-choice model with M = 2),
whose Cartesian product yield the parameter space.
With R (www.r-project.org), we compute the Lwtp
functions over the parameter space to find the maxi-
mizer.

6.1. Real-Life Data
We have obtained scanner data for candy melts from
retailer X , which has limited the data exposure.

Retailer X sells various types of candy melts. For esti-
mation with M = 2, we consider dark and light (regu-
lar) chocolate candy melts. The sales data are weekly,
cover about a year and a half, and consist of 14,940
purchases. Retailer X usually keeps the candy melt
prices constant over a week, so the total revenue
divided by the total sales for each product in each
week is a good indicator of that week’s price. The
sales and prices for chocolate candy melts are in Fig-
ure 7, where no-purchases are customers that did not
purchase one of the chocolate candy melts under con-
sideration. For M = 3, mint chocolate candy melt is
considered in addition to dark and light chocolate
candy melts. We also use three publicly available data
sets on “yogurt,” “ketchup,” and “tuna.” These items
have low prices and high purchase frequencies—two
factors that may favor WTP-choice model.
Yogurt data (Jain et al. 1994) consists of 2006 obser-

vations. For M = 2, we focus on two common brand
choices of Dannon (818 purchases) and Yoplait (674
purchases). The remaining 514 customers are put
under no-purchase.
Dannon and Yoplait prices, respectively, range over

$1.9–$11.1 and $0.3–$19.3. For M = 3, Hiland (44 pur-
chases) is the third product with prices over $2.5–$7.6.
Ketchup data (Kim et al. 1995) consists of 4956 obser-

vations. For M = 2, we focus on Heinz (2526 pur-
chases) and Del Monte (256 purchases) whose prices
respectively range over $0.79–$1.47 and $0.89–$1.49.
For M = 3, the store brand (1155 purchases) is the third
product with prices over $0.75–$0.99.
Canned Tuna data (Kim et al. 1995) consists of

13,705 observations. For M = 2, we focus on Sko (2439
purchases) and Cosw (2238 purchases) whose per-
pound prices, respectively, range over $0.29–$0.89
and $0.19–$0.99. ForM = 3, we also consider Pw (1050
purchases) with prices over $0.17–$0.70.
The likelihood function Lwtpðd; /; a1; b1; a2; b2Þ for

□ WTPs has six parameters. To reduce the dimension
of the maximization problem, we can separate the
estimation of a1 and a2 from the rest. For □ WTPs, the
minimum price pmn (at which m is sold) is the MLE of
am, i.e., a

0
m :¼ minfpmn : ymn ¼ 1g, but then the Lwtp has

terms such as logðpmn � a0mÞ that become negative

Figure 7 Candy Melt Data for M = 2. Left: Weekly sales (–) and prices (- -) for dark chocolate; Middle: Weekly sales (–) and prices (- -) for light
chocolate; Right: Weekly no-purchases (–)
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infinity when pmn ¼ a0m for customer i. To avoid this
numerical difficulty, we remove those customers who
bought product m at the minimum price of a0m and
end up with the N (number of purchases) values in
Table 5.

6.2. Likelihood Comparisons of the Choice Models
We consider six different WTP-choice models by set-
ting d = 1 or d ≤ 1 and parameterize WTPs with a
uniform (□), shifted exponential (x) or triangle (△)
distribution. For example, △ WTP and d ≤ 1 make up
a special WTP-choice model denoted by (△, d≤1), and
similar notation applies to the others. These distribu-
tions have positive supports; □ and x distributions
have increasing generalized failure rates; □ distribu-
tion can represent a firm uninformed about its cus-
tomers; x and △ distributions can represent an
informed firm that matches the mode of a product’s
WTP distribution with the reference price of that
product. This parameterization flexibility of WTP-
choice model is its advantage over Logit model,
which allows only double-exponentially distributed
utilities. We also set M = 2 until prediction accuracy
tests.
First, we compare standard Logit model, mixed

Logit model, and (△, d ≤ 1) WTP-choice model. The
mixed Logit model has the parameters ða1; a2; lb; rbÞ,
where lb and rb are, respectively, the mean and stan-
dard deviation of the uniformly distributed price
coefficient b. △ WTP-choice model has parameters
ðd; /; a1; b1; m1; a2; b2; m2Þ but we reduce the number
of estimated parameters by fixing ai ¼ a0i . Table 5
gives the estimates for parameters and the corre-
sponding L values.

From Table 5, △ WTP-choice model gives a better
(higher) L value for ketchup and tuna data compared
to mixed Logit model. L values of �1832 and �1836
for yogurt data are very close to each other and the
same is true (to a lesser extent) for the candy melt
data. L value of the mixed Logit model is smaller than
that of WTP-choice model for two data sets. When L
value is larger, it is so at most by 0.55%. So, (△, d ≤ 1)
WTP-choice model performs as well as the mixed
Logit model.
Since WTP-choice model in Table 5 has a △ WTP

distribution, we need to estimate the mode of this dis-
tribution. Instead, if we use a □ WTP distribution, the
mode is not required as the support suffices. This
reduces the number of parameters by one for each
product. Another reduction is obtained by assuming
d = 1, i.e., every customer is interested in buying
either one of the products and checks the prices.
While reducing the parameters down to ð/; b1; b2Þ,
(□, d = 1) WTP-choice model also reduces the Lwtp.
Such decreases are reported as Change in % in Table 6,
where Change in % :¼ ½LwtpðM; d � 1Þ � Lwtpðh; d
¼ 1or ; d ¼ 1Þ�=LwtpðM; d � 1Þ and LwtpðM; d � 1Þ
values are from Table 5. Similarly, we report Differ-
ence in % :¼ ½Lml � Lwtpðh; d ¼ 1or ; d ¼ 1Þ�=Lml.
Hence, negative values of Change in % and Difference
in % indicate a drop from the L values in Table 5.
According to Table 6, (□, d = 1) and (x, d = 1)

WTP-choice models are outperformed by mixed
Logit model. On the other hand, the performance
of (□, d = 1) WTP-choice model relative to
(△, d ≤ 1) WTP-choice model suffers significantly
with ketchup and tuna data. In other words,
WTPs of ketchup and tuna customers resemble △
distribution better than □ distribution, and some
of these customers are not interested (d ≤ 1) in
buying the particular brands in our data sets. On
the contrary, performance of (x, d = 1) WTP-choice
model is slightly worse than that of (△, d ≤ 1)
WTP-choice model except for candy melt data
where it performs slightly better by 0.47%.
Table 7 points out WTP-choice model with the

highest Lwtp for each data set. It specifies WTP-choice
model and the estimated parameters. More impor-
tantly, it compares the log-likelihood of the best WTP-
choice model with that of Logit and mixed Logit mod-
els. We see that the best WTP-choice model is one of

Table 5 Log-Likelihoods for Standard and Mixed Logit Models and
(△, d ≤ 1) WTP-Choice Model

Standard logit Mixed logit
(△, d ≤ 1)
WTP-choice

Yogurt
N = 1757

Lsl ¼ �1835 Lml ¼ �1832 Lwtp ¼ �1836

Ketchup
N = 4564

Lsl ¼ �4169 Lml ¼ �4162 Lwtp ¼ �4152

Candy melt
N = 14,125

Lsl ¼ �11; 498 Lml ¼ �11; 496 Lwtp ¼ �11; 560

Tuna
N = 13,332

Lsl ¼ �11; 143 Lml ¼ �11; 143 Lwtp ¼ �11; 024

Table 6 Changes and Differences in Log-Likelihoods for □, x Distributed Willingness To Pays (WTPs) and d = 1

(□, d = 1) WTP choice model (x, d = 1) WTP choice model

Lwtp Change in % Difference in % Lwtp Change in % Difference in %

Yogurt �1853 �0.93 �1.15 �1853 �0.93 �1.15
Ketchup �4560 �9.83 �9.56 �4164 �0.22 �0.05
Candy melt �11,634 �0.64 �1.20 �11,506 0.47 �0.09
Tuna �13,157 �19.35 �18.07 �11,225 �1.82 �0.74
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(□, d = 1), (△, d ≤ 1) or (x, d ≤ 1). LLwtp values for
(□, d = 1) with ketchup data are different in Tables 6
and 7 as the former table is for estimating only
ð/; b1; b2Þ, whereas the latter is for estimating ða1; a2Þ
in addition. In Table 7, with yogurt and candy melt
data, mixed Logit model performs marginally (at
most 0.22%) better. With the other data sets, WTP-
choice model performs significantly better (as much
as 10.84%). In light of these comparisons, it is safe to
propose WTP-choice model as a competitive alterna-
tive to Logit models for low-price items.

6.3. Prediction Accuracy Test
We test the accuracy of sales and price predictions
made with WTP-choice and Logit models. For sales
prediction test, we first split each data set into two
sets of equal sizes. One of the sets is referred to as esti-
mation data while the other is test data. In the first
step, we estimate the parameters for all models using
the estimation data. Next, we use the estimated
parameters to compute the MPE in (expected) sales
with all models and the test data. Table 8 provides
MPEs in % computed as ðPM

m¼1 j
PN

n¼1½fq̂mn ; �̂m
n g�

� ½actual sales�mjÞ=ðPM
m¼1 ½actual sales�mÞ for each test

data set, where q̂mn and �̂m
n are predicted choice proba-

bilities.
(△, d ≤ 1) WTP-choice model always predicts the

sales more accurately than Logit models for M = 2 in
Table 8. Moreover, (△, d ≤ 1) WTP-choice model pre-
dicts the sales better than (x, d ≤ 1) and (□, d = 1)
WTP-choice models, except for ketchup data where
(□, d = 1) has an error of 4.23% compared with 7.86%
for (△, d ≤ 1). For M = 3 products, we study consid-
eration sets of size L = 2. There standard Logit model
performs better with tuna data while mixed Logit and

(□, d = 1) WTP-Choice model perform better with the
other three data sets for predicting sales.
For price prediction test, a centralized revenue

maximization objective (with c = 0) employing (stan-
dard and mixed) Logit models, WTP-choice
(□, d = 1) model, or WTP-choice (△, d ≤ 1) model is
used to obtain optimal prices (p1
; p2
). These prices
are compared in Table 9 with the average of the
observed prices (�p1; �p2) in the empirical data. Optimal
prices predicted (calculated) from the Logit models
show higher deviations from empirical averages than
the prices predicted from the WTP-choice models for
yogurt and candy melt data. Logit-based prices are
relatively closer to empirical prices for the ketchup
and tuna data, where the price coefficient estimate b̂
is relatively larger with respect to the other price coef-
ficient estimates in the rest of data. Price predictions
based on WTP-choice (□, d = 1) and (△, d ≤ 1) mod-
els are similar for all data sets except for tuna, where
predictions from (△, d ≤ 1) are substantially better
than (□, d = 1)—an observation in line with the tuna
results of Table 8. In view of our likelihood computa-
tions as well as sales and price prediction tests with
various real-life data, WTP-choice models compare
well with Logit models to predict the sales and opti-
mal prices for low-price and high-purchase frequency
items.

7. Concluding Remarks

This study has presented a choice model that captures
a customer’s WTPs and preferences. WTP-choice
model contributes to the choice literature, where cus-
tomers follow a simple utility satisficing rule and
hence have bounded rationality. WTP-choice model

Table 7 Best Willingness To Pay (WTP)-Choice Model vs. Logit Models

Best WTP-choice
ðLwtp � Lml Þ=
jLwtp j in %Model Lwtp Lsl Lml

Yogurt (△, d ≤ 1) �1836 �1835 �1832 �0.22
Ketchup (□, d = 1) �3755 �4169 �4162 10.84
Candy melt (x, d ≤ 1) �11,506 �11,498 �11,496 �0.09
Tuna (△, d ≤ 1) �11,024 �11,143 �11,143 1.08

Table 8 Mean Percentage Error in Sales for Logit Models vs. Willingness To Pay (WTP)-Choice Models

M = 2 products M = 3 products

Logit models WTP-choice models Logit models WTP-choice
model □,
d = 1Standard Mixed x, d ≤ 1 □, d = 1 △, d ≤ 1 Standard Mixed

Yogurt 2.52 2.31 7.20 2.21 2.17 4.80 4.80 4.90
Ketchup 8.84 8.66 38.86 4.23 7.86 4.78 4.34 4.73
Candy melt 2.30 2.29 19.24 2.26 0.29 1.17 1.17 1.10
Tuna 5.06 5.06 9.84 43.65 2.71 2.84 3.51 11.12
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has several desirable properties: it explicitly captures
the sequence of products considered and requires
limited information; the choice probabilities are the
same when prices are learnt first or last; and it does
not have the IIA property.
Under competitive pricing with independent WTPs

and no inventory consideration, we show that retail-
ers are loosely coupled—equilibrium profits are cou-
pled but prices are not. Loose coupling simplifies the
computation of equilibrium and facilitates the imple-
mentation of the equilibrium prices in a competitive
market. However, when the WTPs are dependent or
the preferences are dependent on the prices, loose
coupling fails and the retailers must consider the com-
petitor’s price while deciding on own prices. Further-
more, setting price at par with the competitor is not
necessarily the equilibrium strategy even when retail-
ers have identical products and costs. We also show
that price cycles exist in competitive markets where
the WTPs of the products are dependent, and provide
conditions to eliminate price cycles to guarantee the
existence of a price-pair equilibrium. Hence, we can
analytically explain the presence of price cycles in
practice.
Loose coupling of prices also fails when a single

retailer selling multiple products maximizes his
profit. The analysis of this centralized pricing setting
interestingly turns out to be more challenging than
the competitive pricing setting. An iterative algorithm
CIPA is proposed to find centrally optimal prices and
is shown to yield the globally optimal prices when
WTPs have uniform or shifted exponential distribu-
tions. We prove that centrally optimal prices are
higher than equilibrium prices. Through an example,
we illustrate a counterintuitive result that a (stochas-
tic) rise in the WTP of a product can actually reduce
the optimal price of that product.
The sequential decision making structure of WTP-

choice models helps us study lost sales that alter cus-
tomer choices, under which loose coupling remains
valid. We derive equilibrium profits and prices for the
case of lost sales and observe that lost sales affect

profits but not the prices. The lost sales model can be
modified to study backorders; various backorder
models can be envisioned and analyzed in detail but
these models are not presented here to focus on the
WTP-choice model.
For empirical validation, we compare the fit and

prediction accuracy of standard Logit, mixed Logit,
and WTP-choice models by using real-life data. Our
real-life data consist of products with low price and
high purchase frequency for which customers are
likely to use utility satisficing (WTP-choice) rather
than utility maximizing (Logit). WTP-choice models
usually perform better than or on par with Logit mod-
els. WTP-choice model can also be used to estimate
WTP of customers as the model is flexible and does
not assume a specific distribution of WTP. In the final
analysis, we are proposing WTP-choice models as
alternatives that can be considered along with Logit
models, but not to replace Logit models.
Willingness To Pay-choice model has a simple satis-

ficing assumption for the customers, is designed to be
versatile due to general and dependent WTP distribu-
tions, and yields simple competitive price formulas
for independent WTPs. It can serve as a basis for
interesting future studies such as further empirical
studies to investigate distributions for and indepen-
dence of WTPs and more dynamic/detailed pricing
applications.
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